NH winter forecast skill of AO and NAO indices: results and sampling issues

Tim Stockdale, ECMWF

Reusing material from earlier talks given together with

Laura Ferranti and Franco Molteni

Outline

Intro: ECMWF System 4

Predicting NH winter circulation modes

Challenges of sampling

Discussion

System 4 configuration

IFS: T_L255L91 Cy36r4

- Real time forecasts:
 - 51 member ensemble forecast to 7 months
 - SST and atmos. perturbations added to each member
- Back integrations from 1981-2010 (30 years)
 - 15 member ensemble every month
 - 15 members extended to 13 months once per quarter
 - 51 members for Feb/May/Aug/Nov starts

ENSO forecasts are good

NINO3.4 SST rms errors

95% confidence interval for 0001, for given set of start dates

NINO3.4 SST rms errors

95% confidence interval for 0001, for given set of start dates

1981-1995

NINO3.4 SST anomaly correlation

NINO3.4 SST anomaly correlation

1996-2010

So are probabilistic scores

15 members

JJA Europe T2m>upper tercile
Re-forecasts from 1 May, 1981-2010
Reliability score: 0.987
ROC skill score: 0.38

51 members

JJA Europe T2m>upper tercile Re-forecasts from 1 May, 1981-2010 Reliability score: 0.996 ROC skill score: 0.43

(Figures from Susanna Corti)

Ensemble size important for low-signal areas

15 members

DJF Europe T2m>upper tercile Re-forecasts from 1 Nov, 1981-2010 Reliability score: 0.902 ROC skill score: 0.06

51 members

DJF Europe T2m>upper tercile Re-forecasts from 1 Nov, 1981-2010 Reliability score: 0.981 ROC skill score: 0.22

(Figures from Susanna Corti)

Arctic Oscillation

Calculated as first EOF of monthly mean MSLP anomalies, poleward of 20N.

Use same method as CPC, but using ERA interim analysis, 1981-2010.

Model and analysis time-series both obtained by projection onto **observed** EOF.

Correlation of our observed time-series with CPC is 0.996.

EOF (from CPC)

AO re-forecast skill

Correlation (30y) = 0.608

26 years (no volcanoes) Correlation = 0.73

Surprising because model AO is very noisy

Statistical analysis

```
Unbiased variance estimates: Obs/Tot/Int/Ext:
                                             1.0000
                                                        0.8390
                                                                  0.8316
                                                                             0.0074
Model/obs stddev ratio:
Model/obs stddev ratio interval:
                                                     ← model variability consistent with obs
                              0.693 1.129
Bootstrap over nens, pval for ratio=1: 0.7960
                               0.0941
SNR actual
SNR jackknife over nens
                               0.0202 0.1029 0.1857
______
                               0.6085
ACC actual
ACC basic bootstrap over nens : 0.5568 0.7121 0.8144
                                                     ← 95% interval due to ensemble size
                               ACC basic bootstrap over nyears:
ACP from internal sampling: -0.2947 0.0583 0.4010
Mean ACC for nens-1:
                  0.6049
                                              ← only a 0.0004 chance we could get this correlation
p val of measured acc if model perfect:
                                     0.9996
```

- Model skill for these years is relatively high
- Model predictability limit must be wrong (because we exceed it so much)

Other teleconnection patterns

	ACC	S/N	ACP	P-val
PNA (EOF)	0.696	0.64	0.54	0.065
NAO (EOF)	0.465	0.13	0.10	0.017

PNA has high skill and high predictability **NAO** has moderate skill, and low predictability

NAO skill is, like AO, higher than expected

Does resolution help?

Project Minerva has run the ECMWF coupled model at different atmospheric resolutions. We have 30 years of winter forecasts, with 51 member ensembles:

	T319		T639	
	ACC	S/N	ACC	S/N
PNA (EOF)	0.68	0.69	0.69	0.73
NAO (EOF)	0.36	0.17	0.63	0.18

S/N does not seem to be affected by resolution.

NAO structure and skill is significantly (at 5% level) improved by higher atmosphere resolution.

Challenge: sampling errors are large!

Correlation scores, ECMWF S4

Box = 95% interval, bootstrapping on ensemble size

Whiskers = 95% interval, bootstrapping on years included

NH winter forecasts

Fisher z transform diff fuhg(101)-fulf(101) 1981-2010DJF sigma: 0.272 mean: 0.0175

MSLP Ens. mean S/N ratio fuhg(101)-ERA-Int 1981-2010DJF Global rms: 8.92 NH:3.16 TR:11.8 SH:4.67

Even with 101 members, ensemble mean signal not always well defined

Conclusions

S4 has substantial skill in predicting AO phase over a 30 year period

- How typical this is of expected future performance is unknown
- Amplitude of model signal is too weak
- Models are noisy

Scores are unstable

- Sensitive to choice of years, especially for shorter periods
- Relative skill of AO and NAO indices can vary between model versions

Higher resolution (to T639)

- DOES help NAO in particular (quite big improvement)
- Does **NOT** help S/N ratios
- ... according to a single experiment

Conclusions - Sampling

Sampling over NYEARS

- Is an obvious problem for systems without high S/N ratios
- Skill estimates need as many years as possible, but there are limits
- We need to understand sources of skill to know how far back we can go (to 1979? to 1960? Even earlier??)

Ensemble size is often too small

 Given how noisy our models are, we should probably be doing our experiments with ensembles O(100) to get clean results

Costs

 So all we need are very high resolution models, large ensembles, lots of start dates ... and lots of different experiments to improve our models.

